Pat O'Sullivan

Mh4714 Week 11

Week 11

0.1 Integration (contd.)

If $f(x)<0 \quad \forall x \in[a, b]$ then it is easy to see that $\int_{a}^{b} f$ is the negative of the area between the curve, the x-axis and the lines $x=a$ and $x=b$.
If $f(x)$ is sometimes positive and sometimes negative over $[a, b]$ it is easy to see that $\int_{a}^{b} f$ is the area under the curve above the x -axis minus the area above the curve, and below the x -axis, and the lines $x=a$ and $x=b$.

Note: The notation $\int_{a}^{b} f(x) \mathrm{d} x$ has evolved from the special form that upper and lower sums have when $f(x)$ is continuous and the partition uses n subintervals of equal length.
If the length of each sub-interval is Δx then we can write

$$
\begin{aligned}
& U(f, P)=\sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} M_{i} \Delta x, \\
& L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} m_{i} \Delta x .
\end{aligned}
$$

Since f is continuous then we will have $M_{i}=f\left(x_{i}^{*}\right)$ for some $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ and $m_{i}=f\left(x_{i}^{* *}\right)$ for some $x_{i}^{* *} \in\left[x_{i-1}, x_{i}\right]$. That is
$U(f, P)=\sum_{i=1}^{n} M_{i} \Delta x=\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x, L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)=\sum_{i=1}^{n} f\left(x_{i}^{* *}\right) \Delta x$.
and then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{* *}\right) \Delta x .
$$

The symbol \int is the ghost of the \sum symbol and the $\mathrm{d} x$ symbol is the ghost of the Δx.
The symbol $\mathrm{d} x$ is useful because it keeps track of the variable of integration. For example

$$
\int_{1}^{2} x^{2} y \mathrm{~d} x \text { and } \int_{1}^{2} x^{2} y \mathrm{~d} y
$$

are different integrals.
0.1.0.1 Properties of Integrals. If $f(x)$ and $g(x)$ are both integrable over $[a, b]$ then
(i) $\int_{a}^{b} f(x)+g(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x$.
(ii) $\int_{a}^{b} k f(x) \mathrm{d} x=k \int_{a}^{b} f(x) \mathrm{d} x$ for any $k \in \mathbb{R}$.

Theorem 0.1 (Fundamental Theorem of Calculus)

Let f be integrable over $[a, b]$ and $f=g^{\prime}$ for some function g, then

$$
\int_{a}^{b} f(x) d x=g(b)-g(a)
$$

Proof

Let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be any partition of $[a, b]$
Applying the Mean Value Theorem to the function g over the interval $\left[x_{i-1}, x_{i}\right]$, we know that there is a point $c_{i} \in\left[x_{i-1}, x_{i}\right]$ with

$$
g\left(x_{i}\right)-g\left(x_{i-1}\right)=g^{\prime}\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)=f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

Using the usual notation we have

$$
\begin{gathered}
m_{i} \leq f\left(c_{i}\right) \leq M_{i} \\
\Rightarrow m_{i}\left(x_{i}-x_{i-1}\right) \leq f\left(c_{i}\right)\left(x_{i}-x_{i-1}\right) \leq M_{i}\left(x_{i}-x_{i-1}\right) \\
\Rightarrow m_{i}\left(x_{i}-x_{i-1}\right) \leq g\left(x_{i}\right)-g\left(x_{i-1}\right) \leq M_{i}\left(x_{i}-x_{i-1}\right)
\end{gathered}
$$

$\Rightarrow L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \leq \sum_{i=1}^{n}\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \leq \sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)=U(f, P)$
But

$$
\begin{gathered}
\sum_{i=1}^{n}\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)=\left(g\left(x_{1}\right)-g\left(x_{0}\right)\right)+\left(g\left(x_{2}\right)-g\left(x_{1}\right)\right)+\left(g\left(x_{3}\right)-g\left(x_{2}\right)\right) \ldots\left(g\left(x_{n}\right)-g\left(x_{n-1}\right)\right) \\
=g\left(x_{n}\right)-g\left(x_{0}\right)=g(b)-g(a) .
\end{gathered}
$$

That is

$$
L(f, P) \leq g(b)-g(a) \leq U(f, P) \text { for every partition } P
$$

That is $g(b)-g(a)$ is an upper bound for \mathfrak{L} and a lower bound for \mathfrak{U}. That is

$$
\operatorname{lub} \mathfrak{L} \leq g(b)-g(a) \leq \operatorname{glb} \mathfrak{U}
$$

and since f is integrable over $[a, b]$ we have lub $\mathfrak{L}=\operatorname{glb} \mathfrak{U}=\int_{a}^{b} f(x) d x$ That is $g(b)-g(a)=\int_{a}^{b} f(x) d x$.

Example 0.2

Since $\frac{\mathrm{d}}{\mathrm{d} x} \frac{1}{3} x^{3}=x^{2}$ it follows from the above theorem that

$$
\int_{a}^{b} x^{2} \mathrm{~d} x=\frac{1}{3} b^{3}-\frac{1}{3} a^{3} .
$$

0.1.0.2 Indefinite integral.

Because of the above theorem, the symbol $\int f(x) \mathrm{d} x$ without the upper and lower limits represents an anti-derivative of $f(x)$..
That is,

$$
\int f(x) \mathrm{d} x=F(x) \Rightarrow \frac{\mathrm{d}}{\mathrm{~d} x} F(x)=f(x) .
$$

Since $\frac{\mathrm{d}}{\mathrm{d} x} k=0$ for any $k \in \mathbb{R}$ there can be infinitely many anti-derivatives for a given function.

Example 0.3

$$
\int x^{3} \mathrm{~d} x=\frac{1}{4} x^{4}+c \quad \text { for any } c \in R
$$

It is also true that

$$
\int\left(\frac{\mathrm{d}}{\mathrm{~d} x} f(x)\right) \mathrm{d} x=f(x)+c, \quad \text { for any } c \in \mathbb{R} .
$$

0.1.1 Techniques of Integration

0.1.1.1 Integration by Substitution.

The substitution rule is based on the chain rule for differentiation.

Recall that, according to the chain rule (assuming that all functions are suitably differentiable), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x} f(u(x))=\frac{\mathrm{d}}{\mathrm{~d} u} f(u) \frac{\mathrm{d}}{\mathrm{~d} x} u(x)
$$

Example 0.4

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(x^{2}\right)=2 x \cos \left(x^{2}\right)
$$

Therefore we can see that

$$
\int\left(\frac{d}{d u} f(u) \frac{d}{d x} u(x)\right) \mathrm{d} x=\int \frac{\mathrm{d}}{\mathrm{~d} x}(f(u(x))) \mathrm{d} x=f(u(x)) .
$$

Example 0.5

$$
\int 2 x \cos \left(x^{2}\right) \mathrm{d}=\int \frac{\mathrm{d}}{\mathrm{~d} x} \sin \left(x^{2}\right) \mathrm{d}=\sin \left(x^{2}\right)
$$

The substitution rule is now obvious because

$$
\int\left(\frac{d}{d u} f(u) \frac{d}{d x} u(x)\right) \mathrm{d} x=f(u(x))=\int \frac{d}{d u} f(u) \mathrm{d} u .
$$

Notationally we see that

$$
\frac{d}{d x} u(x) \mathrm{d} x
$$

in the left hand integral has been replaced by
in the right hand integral (as if $\mathrm{d} x$ has been cancelled!)
Thus we get the substitution rule

$$
\int F(u) \frac{\mathrm{d}}{\mathrm{~d} x} u(x) \mathrm{d} x \rightarrow \int F(u) \mathrm{d} u
$$

Example 0.6

(i)

$$
\int \begin{array}{lc}
\frac{d u}{d x} & \stackrel{u}{\downarrow} \\
2 x & \cos \left(x^{2}\right) \mathrm{d} x=\int \cos (u) \mathrm{d} u=\sin (u)+c=\sin \left(x^{2}\right)+c
\end{array}
$$

Therefore

$$
\int_{a}^{b} 2 x \cos \left(x^{2}\right) \mathrm{d} x=\sin \left(b^{2}\right)-\sin \left(a^{2}\right) .
$$

(ii)

$$
\int(b+x)^{n} \mathrm{~d} x=\int \stackrel{\frac{d u}{d x}}{\stackrel{\downarrow}{1}} \stackrel{\stackrel{u}{\downarrow}}{\stackrel{\downarrow}{1}}(b+x)^{n} \mathrm{~d} x=\int u^{n} \mathrm{~d} u=\frac{u^{n+1}}{n+1}=\frac{(b+x)^{n+1}}{n+1}+c
$$

if $n \neq-1$.
Therefore

$$
\int_{a}^{b}(b+x)^{n} \mathrm{~d} x=\left[\frac{(b+x)^{n+1}}{n+1}\right]_{a}^{b}=\frac{2 b^{n+1}}{n+1}-\frac{(b+a)^{n+1}}{n+1}
$$

if $n \neq-1$.
(iii)
$\int(b-x)^{n} \mathrm{~d} x=-\int \stackrel{\left.\frac{d u}{d x} \stackrel{u}{\downarrow} \stackrel{\downarrow}{\downarrow}-1(b-x)^{n} \mathrm{~d} x=-\int u^{n} \mathrm{~d} u=-\frac{u^{n+1}}{n+1}=-\frac{(b-x)^{n+1}}{n+1}+c . c \right\rvert\,}{ }$
if $n \neq-1$.
Therefore

$$
\int_{a}^{b}(b-x)^{n} \mathrm{~d} x=\left[-\frac{(b-x)^{n+1}}{n+1}\right]_{a}^{b}=\frac{(b-a)^{n+1}}{n+1}
$$

if $n \neq-1$.

0.1.1.2 Integration by Parts.

The product rule for differentiation suggests another technique for evaluating indefinite integrals:

Firstly note the fact that $\int \frac{\mathrm{d}}{\mathrm{d} x} f(x) \mathrm{d} x=f(x)+$ constant by definition of indefinite integration.

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} x}(u v)=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \Rightarrow \int \frac{\mathrm{~d}}{\mathrm{~d} x}(u v) \mathrm{d} x=\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d}+\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \Rightarrow u v=\int \frac{\mathrm{d} v}{\mathrm{~d} x} \mathrm{~d} x+\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x \\
\Rightarrow=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x .
\end{gathered}
$$

We thus transform the integral $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x$ into $\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$ and it sometimes happens that $\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$ is easier to evaluate than $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x$.

Example 0.7

- Evaluate $\int x \cos (x) \mathrm{d} x$.

We note that we can easily find an indefinite integral for $\cos (x)$ and we can reduce x to 1 by differentiation.

$$
\begin{aligned}
& =x \sin (x)-(-\cos (x))+\text { constant }=x \sin (x)+\cos (x)+\text { constant }
\end{aligned}
$$

- Evaluate $\int x^{2} \cos (x) \mathrm{d} x$.

Here we will apply integration by parts twice:

We now apply integration by parts again to evaluate $\int 2 x \sin (x) \mathrm{d} x$.

$$
=-x \cos (x)+\int \cos (x) \mathrm{d} x=-x \cos (x)+\sin (x)+\text { constant }
$$

Therefore we have:

$$
\begin{gathered}
\int x^{2} \cos (x) \mathrm{d} x=x^{2} \sin (x)-2(-x \cos (x)+\sin (x))+\text { constant } \\
\left.=x^{2} \sin (x)+2 x \cos (x)-2 \sin (x)\right)+ \text { constant }
\end{gathered}
$$

0.1.2 Taylor's Theorem

We can prove a very important theorem using integration by parts.

Theorem 0.8

Let f be infinitely differentiable over \mathbb{R}.
Prove that for any real numbers a and b

$$
\begin{aligned}
f(b)=f(a)+f^{(1)}(a)(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\frac{f^{(3)}(a)}{3!}(b-a)^{3} & +\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n} \\
& +\int_{a}^{b} \frac{f^{(n+1)}(x)}{n!}(b-x)^{n} \mathrm{~d} x
\end{aligned}
$$

for all integers $n \geq 0$.

Proof

We will use induction to prove this.
To prove the case $n=0$, note that

$$
\int_{a}^{b} \frac{f^{(1)}(x)}{0!}(b-x)^{0} \mathrm{~d} x=\int_{a}^{b} f^{(1)}(x) \mathrm{d} x=f(b)-f(a)
$$

That is,

$$
f(b)=f(a)+\int_{a}^{b} \frac{f^{(1)}(x)}{0!}(b-x)^{0} \mathrm{~d} x
$$

which is the case for $n=0$.

Now we will show that the $n=k$ case implies the $n=k+1$ case:

$$
\begin{aligned}
f(b)=f(a)+f^{(1)}(a)(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\frac{f^{(3)}(a)}{3!}(b-a)^{3} & +\cdots+\frac{f^{(k)}(a)}{k!}(b-a)^{k} \\
& +\int_{a}^{b} \frac{f^{(k+1)}(x)}{k!}(b-x)^{k} \mathrm{~d} x
\end{aligned}
$$

Using integration by parts we get

$$
\begin{aligned}
\int_{a}^{b} \frac{f^{(k+1)}(x)}{k!}(b-x)^{k} \mathrm{~d} x & \\
& =\left[\frac{f^{(k+1)}(x)}{k!}\left(-\frac{(b-x)^{k+1}}{k+1}\right)\right]_{a}^{b}-\int_{a}^{b} \frac{f^{(k+2)}(x)}{k!}\left(-\frac{(b-x)^{k+1}}{k+1}\right) \mathrm{d} x \\
& =\frac{f^{(k+1)}(a)}{(k+1)!}(b-a)^{k+1}+\int_{a}^{b} \frac{f^{(k+2)}(x)}{(k+1)!}(b-x)^{k+1} \mathrm{~d} x
\end{aligned}
$$

And so we have

$$
\begin{aligned}
f(b)=f(a)+f^{(1)}(a)(b-a) & +\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\frac{f^{(3)}(a)}{3!}(b-a)^{3}+\cdots+\frac{f^{(k)}(a)}{n!}(b-a)^{k} \\
& +\frac{f^{(k+1)}(a)}{(k+1)!}(b-a)^{k+1}+\int_{a}^{b} \frac{f^{(k+2)}(x)}{(k+1)!}(b-x)^{k+1} \mathrm{~d} x
\end{aligned}
$$

Therefore it follows from the Principle of Induction that

$$
\begin{aligned}
f(b)=f(a)+f^{(1)}(a)(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\frac{f^{(3)}(a)}{3!}(b-a)^{3} & +\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n} \\
& +\int_{a}^{b} \frac{f^{(n+1)}(x)}{n!}(b-x)^{n} \mathrm{~d} x
\end{aligned}
$$

for all $n \geq 0$.

